
Differential Expression Analysis with DESeq2 for
beginners/intermediate

Jasleen Grewal
Wednesday, June 14, 2017

Contents
Load Data and libraries 1

View the data . 2
Data cleanup . 3

DESeq2 wet toes - Step 1 3
Build DESeq2 object . 3
Plot PCA . 3

DESeq2 wet toes - Step 2 5
Differential Expression Analysis . 5
P-value versus Adjusted P-value . 7

Saving results file 7

Data distribution 7

Adding gene names 9

Load Data and libraries

i) First let us download the data

• Instructions: Please SCP the data files from WestGrid. You will have received instructions
for this already.

We will be using an in-house dataset of Inbred Long Sleep, ILS and Inbred Short Sleep, ISS mice. The
ILS strain is selected for ‘longer recovery’ from ethanol consumption. The ISS strain is selected for
‘shorter recovery’ from ethanol consumption (they don’t get hangovers). This is because the ILS strain
has a particular allele of the Lore2 gene that exhibits an increase in the loss of righting response time.
You can read more about it here. Our dataset has 3 ILS samples treated with saline (control strain) and
4 ISS samples treated with saline (treatment strain). The counts have been calculated using HTSeq.
We will be loading our data into the object data_raw. We will be loading our covariate information
into the object covariates. By default, these objects are dataframes, a type of table in R.

– data_raw contains our count data, where each row is a gene and each column is a sample.

– covariates contains information for each sample, defining experimental groups. Here, each row is
a sample, and each column defines different attributes of the sample.

data_raw = read.table("ILS_ISS_saline_HTSeq_nostats.txt", header = TRUE, stringsAsFactors = FALSE)
covariates = read.table("ILS_ISS_saline_HTSeq_nostats_covars.txt", header = TRUE,

stringsAsFactors = FALSE)

1

https://www.jax.org/strain/009324
https://www.jax.org/strain/009325
http://pubmedcentralcanada.ca/pmcc/articles/PMC3581861/

We can see the gene names in the data_raw dataframe by printing the row names, like so:
head(rownames(data_raw))

[1] "ENSMUSG00000000001" "ENSMUSG00000000003" "ENSMUSG00000000028"
[4] "ENSMUSG00000000031" "ENSMUSG00000000037" "ENSMUSG00000000049"

The head command lets us view the first 6 entries, instead of printing alllll the genes

We can see the sample names in the data_raw dataframe by printing the column names, like so:
colnames(data_raw)

[1] "ILS_S_1_A" "ILS_S_2_B" "ILS_S_3_C" "ILS_S_3_H" "ISS_S_1_A" "ISS_S_2_B"
[7] "ISS_S_3_F"

We can see the sample names in the covariates dataframe by printing the row names, like so:
rownames(covariates)

[1] "ILS_S_1_A" "ILS_S_2_B" "ILS_S_3_C" "ILS_S_3_H" "ISS_S_1_A" "ISS_S_2_B"
[7] "ISS_S_3_F"

ii) Load libraries
If you do not have DESeq2 installed, you will need to run these two commands in your RStudio console:
source("http://bioconductor.org/biocLite.R")
biocLite("DESeq2")
biocLite("biomaRt")
For the other 2 packages, you can install them like so: install.packages("knitr")

library(DESeq2)
library(ggplot2)
library(biomaRt)
library(knitr)

View the data

DATA The values for each gene are raw counts. There should be 38,293 genes (rows), across 7 samples
(columns). The dim function lets us view the dimensions of a dataframe.
print(dim(data_raw))

[1] 38293 7

Let us take a look at the first 6 rows of the dataframe with the raw counts. The head command lets us do
that. The kable command makes the output table look pretty in the pdf :) If you are running this in RStudio
Console, you can just say head(data_raw).
kable(head(data_raw))

ILS_S_1_A ILS_S_2_B ILS_S_3_C ILS_S_3_H ISS_S_1_A ISS_S_2_B ISS_S_3_F
ENSMUSG00000000001 486 364 474 683 881 660 865
ENSMUSG00000000003 0 0 0 0 0 0 0
ENSMUSG00000000028 18 15 19 26 26 21 21
ENSMUSG00000000031 5 1 6 6 11 13 20
ENSMUSG00000000037 28 15 28 50 54 42 49
ENSMUSG00000000049 4 2 2 3 6 7 5

2

COVARIATES Let us also take a look at the covariates dataframe.
kable(covariates)

Strain Treatment
ILS_S_1_A ILS Saline
ILS_S_2_B ILS Saline
ILS_S_3_C ILS Saline
ILS_S_3_H ILS Saline
ISS_S_1_A ISS Saline
ISS_S_2_B ISS Saline
ISS_S_3_F ISS Saline

Data cleanup

i) Remove all genes where there are zero counts for all samples. You’ll be left with 25,600 genes.
data_clean = data_raw[as.logical(rowSums(data_raw != 0)),]
dim(data_clean)

[1] 25600 7

ii) Subset the data by the samples that have covariate information. We will also relevel our covariate
column with information on the experimental type.

• We need to set the default ‘reference’ experimental strain to ILS, so that any fold changes are calculated
as treatment (ISS) vs control (ILS).

• Our experimental groups are defined in the column covariates$Strain
data = data_clean[, row.names(covariates)]
covariates$Strain = factor(covariates$Strain, levels = c("ILS", "ISS"))

DESeq2 wet toes - Step 1

Build DESeq2 object

We will use the count data in our dataframe data, and our covariate information in our dataframe covariates,
to fit a Strain based model for the samples.
dds_counts <- DESeqDataSetFromMatrix(countData = data, colData = covariates, design = ~Strain)
ds_fit <- DESeq(dds_counts)

Plot PCA

In order to make sure our data looks sensible, and to check for any outliers, we can plot the first 2 Principal
Components of the data. For this, we will first need to retrieve the log transformed counts from our fit object,
which we will do with the rlogTransformation function in DESeq2.
rld <- rlogTransformation(ds_fit, blind = TRUE)

Then we use the plotPCA function in DESeq2 to plot the first 2 PC’s.

3

DESeq2::plotPCA(rld, intgroup = c("Strain")) + theme_bw() + geom_text(aes(label = colnames(rld)))

ILS_S_1_A

ILS_S_2_B

ILS_S_3_CILS_S_3_H
ISS_S_1_A

ISS_S_2_B

ISS_S_3_F

−2.5

0.0

2.5

−5.0 −2.5 0.0 2.5 5.0

PC1: 73% variance

P
C

2:
 1

7%
 v

ar
ia

nc
e

group

a

a

ILS

ISS

As we can see, the ILS_S_2_B is quite far away from all the other samples. We will exclude this sample
from future analysis. We will start by removing it from our covariates table.
covariates_new = covariates[rownames(covariates) != "ILS_S_2_B",]

What are the samples in the covariates table now?
kable(covariates_new)

Strain Treatment
ILS_S_1_A ILS Saline
ILS_S_3_C ILS Saline
ILS_S_3_H ILS Saline
ISS_S_1_A ISS Saline
ISS_S_2_B ISS Saline
ISS_S_3_F ISS Saline

Next, we will again make sure we are keeping the data for the samples we have the covariate information for
(no more ILS_S_2_B !). We will also remove any genes that have ‘zero’ counts in all of our samples.
data_new = data_clean[, rownames(covariates_new)]
data_new = data_new[as.logical(rowSums(data_new != 0)),]

What are the dimensions of our new dataset? (We should have 25,394 genes, and 6 samples now).
print(dim(data_new))

[1] 25394 6

Let us fit the model, again. Our model will be saved in the object, ds_new_fit.

4

dds_new_counts <- DESeqDataSetFromMatrix(countData = data_new, colData = covariates_new,
design = ~Strain)

ds_new_fit <- DESeq(dds_new_counts)
rld_new <- rlogTransformation(ds_new_fit, blind = TRUE)

Let us also review our PCA plot, to make sure everything looks good and that we have removed the outlier.
DESeq2::plotPCA(rld_new, intgroup = c("Strain")) + theme_bw() + geom_text(aes(label = colnames(rld_new)))

ILS_S_1_A

ILS_S_3_CILS_S_3_H

ISS_S_1_A

ISS_S_2_B

ISS_S_3_F

−2

0

2

−6 −3 0 3 6

PC1: 79% variance

P
C

2:
 1

0%
 v

ar
ia

nc
e

group

a

a

ILS

ISS

Now let us compare the two Strain types in the model that we fit.
We will see log2 fold change results for Strain ISS vs ILS
res = results(ds_new_fit)
kable(head(res))

baseMean log2FoldChange lfcSE stat pvalue padj
ENSMUSG00000000001 654.882728 -0.0966413 0.0980852 -0.9852794 0.3244869 0.7903037
ENSMUSG00000000028 22.091736 -0.1991458 0.1491001 -1.3356518 0.1816631 0.6549837
ENSMUSG00000000031 9.467788 0.1349042 0.1229589 1.0971485 0.2725765 0.7518182
ENSMUSG00000000037 40.647109 -0.0956190 0.1547720 -0.6178054 0.5367036 0.9017844
ENSMUSG00000000049 4.354693 0.0387544 0.0949037 0.4083552 0.6830129 0.9479047
ENSMUSG00000000056 826.979761 -0.0856696 0.0968421 -0.8846316 0.3763553 0.8292743

DESeq2 wet toes - Step 2

Differential Expression Analysis

Lastly, let us try and identify differentially expressed genes in our results object, res. But first, let’s make
sure we have pvalues for all genes (i.e. no pvalues are weird)

[1] "Total genes are: 25394"

[1] "Gene with p-value 'NA': 7"

5

Whatever is an NA p-value?

Sometimes with DESeq2, a gene with a p-value of NA mean that the gene’s counts were below DESeq2’s
internal threshold for assessing any sort of substantial differential expression. This is called independent
filtering, and we can remove this by setting the independentFiltering flag to FALSE when we generate
our results from the model we fit, like so:
res_nofilter = results(ds_new_fit, independentFiltering = FALSE)

How many genes with NA p-value are there in this new results data object?

[1] "Total genes are: 25394"

[1] "Gene with p-value 'NA': 7"

What? What are these genes then? Let us take a look at the genes in the res dataframe which have a pvalue
of NA.
kable(res[is.na(res$pvalue),])

baseMean log2FoldChange lfcSE stat pvalue padj
ENSMUSG00000020713 422.04367 0.0818306 0.0508294 1.6099057 NA NA
ENSMUSG00000028298 25.98245 0.1891820 0.0760347 2.4880994 NA NA
ENSMUSG00000046341 776.05051 1.8320542 0.1529313 11.9795901 NA NA
ENSMUSG00000075014 83.86589 0.0245023 0.0416450 0.5883615 NA NA
ENSMUSG00000096385 38.41533 0.0369702 0.0464921 0.7951926 NA NA
ENSMUSG00000097312 80.27601 -0.0008426 0.0594809 -0.0141658 NA NA
ENSMUSG00000097346 23.13011 0.1333450 0.0889143 1.4997030 NA NA

What were the original count values of these genes? Let us get these gene names, and then subset our
dataframe with the counts, data_new, with these genes.
genes_NA = rownames(res[is.na(res$pvalue),])
genecounts_NA = data_new[genes_NA,]
kable(genecounts_NA)

ILS_S_1_A ILS_S_3_C ILS_S_3_H ISS_S_1_A ISS_S_2_B ISS_S_3_F
ENSMUSG00000020713 5 0 0 443 173 2875
ENSMUSG00000028298 2 0 0 35 20 153
ENSMUSG00000046341 15 20 29 3312 1084 1752
ENSMUSG00000075014 104 0 1 45 44 408
ENSMUSG00000096385 39 0 1 24 22 196
ENSMUSG00000097312 179 2 7 112 64 137
ENSMUSG00000097346 14 6 7 19 76 17

In our case, it appears that there are some genes with count outliers. That is, a single sample has a count
that is disproportionally impacting the log fold changes and resulting p-values. These are genes whose counts
do not fit to a negative binomial distribution, but sadly this discussion lies outside the scope of this tutorial.
For now, we will simply fix for this by adjusting the Cook’s cutoff that is used to determine count outliers
(we can set the flag cooksCutoff to FALSE), like so:
res_nofilter = results(ds_new_fit, independentFiltering = FALSE, cooksCutoff = FALSE)

How many genes with NA p-value are there in this new results data object?

[1] "Total genes are: 25394"

6

[1] "Gene with p-value 'NA': 0"

P-value versus Adjusted P-value

• If our null hypothesis is that no gene is differentially expressed in the ISS strain as compared to the ILS
strain of mice, then by random chance we would expect up to 1% of the genes to have a p-value below 0.01.

• To adjust for multiple testing, we can use the Benjamini-Hochberg test correction method. Nicely
enough, DESeq2 does that for us automatically, and we can find these values in the padj column of our
new results object, res_nofilter.

[1] "Number of genes with p-value < 0.01: 1368"

[1] "Number of genes with adjusted p-value < 0.01: 580"

[1] "1% of total number of genes is 253.94"

Saving results file

We can save our results object to a csv file, to analyze later in Excel or other tools of our choice.
write.csv(as.data.frame(res_nofilter), file = "results.csv")

Data distribution

This section is optional

We can look at the dispersion of gene counts around their mean values. What is this, and why is this
relevant?
Experiments have found that the negative binomial distribution more appropriately captures the spread
of counts for any gene among biological replicates in RNAseq. We need to assume a distribution for our
data if we want to estimate any probability of ‘extreme events’ happening by random chance, from a small
set of replicates. Dispersion plots show how much every gene’s counts deviates from its mean value in
our dataset. The red line shows the curve that is fit through the dispersion value of each gene (shown in
black). The points in blue are dispersion outliers, and do not fall within our expectation for the range of
dispersion based on what we have fit to. Please look up shrinkage of transformed gene counts in DESeq2 if
you’re interested in this sort of assessment of the data.

7

DESeq2::plotDispEsts(ds_new_fit)

1e−01 1e+01 1e+03 1e+05

1e
−

08
1e

−
04

1e
+

00

mean of normalized counts

di
sp

er
si

on

gene−est
fitted
final

We can also have an overview of the comparison with an MA plot. An MA-plot shows the log-fold changes for
genes in our comparison groups versus the average counts for each gene. We can use it to figure out if nwe
need to normalize our data. As we go towards lower read count values, there is usually higher variability in
the log fold change estimates. This heteroskedasticity is because the ratios come out noisier for lower counts.
DESeq2 tries to fix this by making the Log Fold Change estimate shrink towards zero when there are low
counts for a gene, or when the dispersion for a gene is high, or when there are few degrees of freedom in the
model. You can read more about this here.
Red points indicate genes with adjusted P value < 0.1.
plotMA(res_nofilter, ylim = c(-1, 1))

8

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8

1e−01 1e+01 1e+03 1e+05

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

mean of normalized counts

lo
g

fo
ld

 c
ha

ng
e

Adding gene names

This section is optional

We can replace our ensemble gene names with their official ‘mgi’ gene names, without using Google! Remember
these are mice genes, that’s why we need to refer to the M.musculus ensembl dataset, and map over the
ensemble IDs to the ‘MGI’ symbol.
ensembl = useMart("ensembl", dataset = "mmusculus_gene_ensembl")
genemap <- getBM(attributes = c("ensembl_gene_id", "mgi_symbol"), filters = "ensembl_gene_id",

values = rownames(res_nofilter), mart = ensembl)
idx <- match(rownames(res_nofilter), genemap$ensembl_gene_id)
res_nofilter$mgi_symbol <- genemap$mgi_symbol[idx]

The resulting results table looks like this:
kable(head(res_nofilter))

baseMean log2FoldChange lfcSE stat pvalue padj mgi_symbol
ENSMUSG00000000001 654.882728 -0.0966413 0.0980852 -0.9852794 0.3244869 0.9932374 Gnai3
ENSMUSG00000000028 22.091736 -0.1991458 0.1491001 -1.3356518 0.1816631 0.9057523 Cdc45
ENSMUSG00000000031 9.467788 0.1349042 0.1229589 1.0971485 0.2725765 0.9932374 H19
ENSMUSG00000000037 40.647109 -0.0956190 0.1547720 -0.6178054 0.5367036 0.9932374 Scml2
ENSMUSG00000000049 4.354693 0.0387544 0.0949037 0.4083552 0.6830129 0.9932374 Apoh
ENSMUSG00000000056 826.979761 -0.0856696 0.0968421 -0.8846316 0.3763553 0.9932374 Narf

9

	Load Data and libraries
	View the data
	Data cleanup

	DESeq2 wet toes - Step 1
	Build DESeq2 object
	Plot PCA

	DESeq2 wet toes - Step 2
	Differential Expression Analysis
	P-value versus Adjusted P-value

	Saving results file
	Data distribution
	Adding gene names

