
Modifying ggplot objects - intermediate tutorial
Jasleen Grewal

2018-05-23

Contents
Getting started 1

ggplot - Review 2

Preparing our data 4
Get Data . 4
Exploratory plots . 4

Modifying guides 7

Facet Wrap and Facet Grid - plotting variables 11
Highlighting a part of the plot . 14

The theme() element 17

Make my plot look like it was made in Excel 20

Exercises 22

Additional tid-bits 23

Take-aways 24

Getting started

If this is your first time using the ggplot2 library within R, please refer to the Beginners Tutorial.
If you don't have ggplot2 installed already
install.packages("ggplot2")

Let us load up ggplot2 into our current environment.
require(ggplot2)

1

https://jasgrewal.github.io/common/seminars/teaching/r_ggplot2_beginners_08112017/ggplot_intro.pdf

ggplot - Review

Let us take a quick look at the plot script for the last ggplot figure we generated in the preceding tutorial.
Get data we were working with earlier
data("msleep", package = "ggplot2")
Plot the ggplot
ggplot(msleep, aes(x = vore, y = sleep_rem)) + geom_point(alpha = 0.5) +

stat_summary() + theme_minimal() + theme(text = element_text(size = 12)) +
ggtitle("I changed the title") + theme(plot.title = element_text(hjust = 0.5),
axis.text.x = element_text(angle = 45, hjust = 1)) + labs(x = "-vore",
y = "REM sleep") + facet_wrap(~conservation, ncol = 3)

NA

lc nt vu

cd domesticated en

ca
rn

i
he

rb
i

ins
ec

ti
om

ni NA

ca
rn

i
he

rb
i

ins
ec

ti
om

ni NA
ca

rn
i

he
rb

i

ins
ec

ti
om

ni NA

0

2

4

6

0

2

4

6

0

2

4

6

−vore

R
E

M
 s

le
ep

I changed the title

There are 5 key points in this long line of code:

• The data object is msleep.

• We used theme_minimal() to apply a clean background (not grey!) to our plot.

• We modified the text size and plot title placement using theme().

• We use theme_minimal before we add any modifications to theme(), because otherwise

2

theme_minimal() will reset any changes we added to our figure using theme().

• We separated different categories (in ‘conservation’) using facet_wrap(), and fixed the maximum
number of ‘columns’ we wanted for the facet panels.

Here’s a quick way to shorten this code a bit more. The theme_minimal() element has 2 options we can define
in it - font size, and font family. Instead of defining these in theme, we can define them in theme_minimal().
Check to see if this gives the same figure as above.
ggplot(msleep, aes(x = vore, y = sleep_rem)) + geom_point(alpha = 0.5) +

stat_summary() + theme_minimal(base_size = 12) + ggtitle("I changed the title") +
theme(plot.title = element_text(hjust = 0.5), axis.text.x = element_text(angle = 45,

hjust = 1)) + labs(x = "-vore", y = "REM sleep") + facet_wrap(~conservation,
ncol = 2)

• hjust=0.5 means align text at the center, whereas hjust=1 means right, and hjust=0 means left.

Before we dive into today’s tutorial, let me highlight an error message you may receive as you run the code
above,
Warning message: Removed 22 rows containing missing values (geom_point).
This is because we have ‘NA’ values in our dataframe. We can overcome this by updating our msleep to get
rid of rows that contain ‘NA’. This is done using the function na_omit().
msleep = na.omit(msleep)

Fair warning, na.omit will remove rows that have an ‘NA’ value in any column, so if you have
certain columns that are ‘NA’ more often than not, you might want to remove those first, or
replace the value with 0.

3

Preparing our data

Get Data

We will be working with a sample dataset available within the ggplot2 library, called midwest. This dataset
contains statistics on populations in US Midwest.
data("midwest", package = "ggplot2")

We can take a peek at the data, using the head command.
Kable makes output table look pretty (requires package - knitr)
kable(head(midwest))

PID county state area poptotal popdensity popwhite popblack popamerindian popasian popother percwhite percblack percamerindan percasian percother popadults perchsd percollege percprof poppovertyknown percpovertyknown percbelowpoverty percchildbelowpovert percadultpoverty percelderlypoverty inmetro category
561 ADAMS IL 0.052 66090 1270.9615 63917 1702 98 249 124 96.71206 2.5752761 0.1482826 0.3767590 0.1876229 43298 75.10740 19.63139 4.355859 63628 96.27478 13.151443 18.01172 11.009776 12.443812 0 AAR
562 ALEXANDER IL 0.014 10626 759.0000 7054 3496 19 48 9 66.38434 32.9004329 0.1788067 0.4517222 0.0846979 6724 59.72635 11.24331 2.870315 10529 99.08714 32.244278 45.82651 27.385647 25.228976 0 LHR
563 BOND IL 0.022 14991 681.4091 14477 429 35 16 34 96.57128 2.8617170 0.2334734 0.1067307 0.2268028 9669 69.33499 17.03382 4.488572 14235 94.95697 12.068844 14.03606 10.852090 12.697410 0 AAR
564 BOONE IL 0.017 30806 1812.1176 29344 127 46 150 1139 95.25417 0.4122574 0.1493216 0.4869181 3.6973317 19272 75.47219 17.27895 4.197800 30337 98.47757 7.209019 11.17954 5.536013 6.217047 1 ALU
565 BROWN IL 0.018 5836 324.2222 5264 547 14 5 6 90.19877 9.3728581 0.2398903 0.0856751 0.1028101 3979 68.86152 14.47600 3.367680 4815 82.50514 13.520249 13.02289 11.143211 19.200000 0 AAR
566 BUREAU IL 0.050 35688 713.7600 35157 50 65 195 221 98.51210 0.1401031 0.1821340 0.5464022 0.6192558 23444 76.62941 18.90462 3.275892 35107 98.37200 10.399635 14.15882 8.179287 11.008586 0 AAR

Exploratory plots

Let us generate some exploratory figures from our dataset. Firstly we will try to plot the population density
across different counties in different states, as histograms:
What does the state-wise population density look like?
ggplot(midwest, aes(fill = state, x = popdensity)) + geom_histogram() +

theme_minimal(base_size = 13) + labs(x = "Population Density", y = "Number of counties")

0

100

200

0 25000 50000 75000

Population Density

N
um

be
r

of
 c

ou
nt

ie
s

state
IL

IN

MI

OH

WI

Notably, the histogram is currently stacked for different states. We can ‘separate’ the states as separate bars,
by modifying position in ‘geom_histogram():

4

ggplot(midwest, aes(fill = state, x = popdensity)) + geom_histogram(position = "dodge") +
theme_minimal(base_size = 13) + labs(x = "Population Density", y = "Number of counties")

0

20

40

60

0 25000 50000 75000

Population Density

N
um

be
r

of
 c

ou
nt

ie
s

state
IL

IN

MI

OH

WI

We can also visualize these as state-specific data distributions, like so:
ggplot(midwest, aes(fill = state, x = popdensity)) + geom_density(alpha = 0.4) +

theme_minimal(base_size = 13) + labs(x = "Population Density", y = "Number of counties")

0e+00

2e−04

4e−04

6e−04

0 25000 50000 75000

Population Density

N
um

be
r

of
 c

ou
nt

ie
s

state
IL

IN

MI

OH

WI

Notice how the y-axis has such a wide range but most of our data is in a tiny range - we can log transform
the data to ‘spread it out’.
- Instead of log transforming my column on the actual dataset, I can simply apply the function to the y
variable within aes().
- In the next parts of the tutorial we will be modifying things like panels, font size, colour, panel colour,
grid-lines - since most of our ggplot will retain the same structure (we will only be stylizing aspects of
it), I will ‘initialize’ each new exploratory plot as a separate object, using obj_name <- ggplot(something
something) . This comes in handy if we want to keep adding new ‘geometric objects’ on top of our original
ggplot figure, without copying the code every single time.

5

g1_poplog <- ggplot(midwest, aes(fill = state, x = log2(popdensity))) +
geom_density(alpha = 0.4) + theme_minimal(base_size = 13) + labs(x = "Log transformed - Population Density",
y = "Proportion of counties")

plot(g1_poplog)

0.0

0.1

0.2

0.3

0.4

6 9 12 15

Log transformed − Population Density

P
ro

po
rt

io
n

of
 c

ou
nt

ie
s

state
IL

IN

MI

OH

WI

Maybe I want to compare the population of whites against black people in the different counties of all states?
- We can fit a ‘loess’ curve to see specific trends for different states, with the stat_smooth() element.
- This can be modified with the method option in stat_smooth()

Define plot
scatter_popbw <- ggplot(midwest, aes(x = log2(popblack), y = log2(popwhite),

colour = state)) + geom_point(alpha = 0.5) + theme_bw(base_size = 11) +
stat_smooth() + labs(x = "Log transformed - Population of Blacks",
y = "Log transformed - Population of Whites")

Print plot
scatter_popbw

6

8

12

16

20

24

0 5 10 15 20

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

state

IL

IN

MI

OH

WI

Try the following:
- Remove the SD spread (set se = FALSE in stat_smooth())
- Plot the SD spread in the 90% confidence interval (set level = 0.90 in stat_smooth())

Modifying guides

Notice how, in the legend for colours in our last plot, the points appear faint - this is because by default, we
plot them with alpha=0.5. However, we ideally want our points to appear with full opaqueness in our legend.
For this, we modify the guides() element.
> Guides for different attributes can be set using this argument. Depending on the attribute we want to modify,
we edit it using a nested attribute called guide_legend() (for fill, colour, line etc) or guide_colourbar (for
bars of colour gradients).
scatter_popbw + guides(colour = guide_legend(override.aes = list(alpha = 1,

size = 2)))

7

8

12

16

20

24

0 5 10 15 20

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

state

IL

IN

MI

OH

WI

What did we do? While there are several attributes we can modify using guide_legend, here we simply
overwrote some of the default aesthetics for ‘colour’ in the colour legend for our plot.
We can, ofcourse, go ahead and change other things for our colour legend.
First I'll save the previous plot
scatter_goodalpha <- scatter_popbw + guides(colour = guide_legend(override.aes = list(alpha = 1,

size = 2)))
Then I'll add another 'guides()' element with a different set of
attributes to modify
scatter_goodalpha + guides(colour = guide_legend(title = "American State"))

8

8

12

16

20

24

0 5 10 15 20

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Oops- notice how adding guides twice to a plot only keeps the last definition? Best to just define it once.
We will also remove the annoying ‘grey’ colour around the line by setting fill=NA in the override.aes
section.
Define all legend modifications in 1 guides() statement
multiline_labels <- scatter_popbw + guides(colour = guide_legend(override.aes = list(alpha = 1,

size = 2, fill = NA), title = "American State", nrow = 2))

horiz_labels <- scatter_popbw + guides(colour = guide_legend(override.aes = list(alpha = 1,
size = 2, fill = NA), title = "American State", direction = "horizontal",
nrow = 2, label.position = "bottom"))

multiline_labels

9

8

12

16

20

24

0 5 10 15 20

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

In the last plot, you may be having a hard time distinguishing the different states because of the high amount
of overlap in them. We can separate these elements out into multiple ggplots using facet_wrap().

10

Facet Wrap and Facet Grid - plotting variables

The facet_wrap() function lets us split our data-points into separate groups based on a single column.
We can also do this to compare two columns. If we are interested in visualizing all pair-wise comparisons
between two columns (even when there may be no data points available for certain pairs of values), we use
facet_grid().
The following two plots show the difference between the outputs of facet_wrap() and facet_grid().
Create Facet Wrap plot
g1_fw <- multiline_labels + ggtitle("Facet Wrap plot for states") + facet_wrap(~state)
Print this
g1_fw

OH WI

IL IN MI

0 5 10 15 20 0 5 10 15 20

0 5 10 15 20
8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Facet Wrap plot for states

Create Facet Grid plot
g1_fg <- multiline_labels + ggtitle("Facet Grid plot for states") + facet_grid(~state)
Print this
g1_fg

11

IL IN MI OH WI

0 5 101520 0 5 101520 0 5 101520 0 5 101520 0 5 101520
8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Facet Grid plot for states

As you can see, facet_grid() is much more readable. We can improve readibility by removing entries
along the x-axis that do not have any values in a given ‘panel’. This is done using the scales option in
facet_grid() - the possible values are “free_x”, “free_y”, “free”. Depending on what you want your reader
to focus on, one of these options may be chosen.
We can also make sure the panel width is complementary to the amount of space the data points actually
take up. We can set this using the space option, which has the same set of possible values as scales.
Create plot object
g1_fg_clean <- multiline_labels + ggtitle("Compact Facet Grid plot") +

facet_grid(~state, scales = "free_x", space = "free_x")
Print plot object
g1_fg_clean

12

IL IN MI OH WI

0 5 10 15 20 0 5 10 15 0 5 10 15 20 5 10 15 0 5 10 15
8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact Facet Grid plot

• Try removing the space option and see how the plot changes.

• What happens if you set scales = "free"? Do you see why including a free scale for ‘y’ might be
misleading for readers?

• Do you also see how it is handy to create a new plot object?

Instead of having horizontally aligned columns in facet_grid, we can generate vertically aligned columns by
defining the facetting relationship of the interesting variable against the rest of the data, state~., instead of
everything versus variable, ~state.
Create plot object
g1_fg_clean_vertical <- multiline_labels + ggtitle("Compact vertical Facet Grid plot") +

facet_grid(state ~ ., scales = "free_x", space = "free_x")

Print plot object
g1_fg_clean_vertical

13

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

Highlighting a part of the plot

Sometimes we may want to draw attention to only specific entries in the plot. For example, in the plot above,
we may want to focus specifically on data points (representative of State countys) where poverty is high
(percbelowpoverty > 15) . We can explicitly plot these points on top of our existing figure, as shown below:
g1_fg_clean_vertical_pov <- g1_fg_clean_vertical + geom_point(data = midwest[midwest$percbelowpoverty >

15,], colour = "black")
g1_fg_clean_vertical_pov

14

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

Does this seem to suggest that high poverty is found in areas where the relative white population
is lower than the expected white population based on state trends? - find out by doing grad
school!

What did we do here? We took our pre-existing plot where everything had been plotted. We then specified
only a part of our original dataset to be passed to a new geometric function, a geom_point(), and we set the
colour="black" for all the points that this geom_point() is plotting.

Optional: We can also go the other way, where we add all the points to all the panels as background. For
this, however, we simply have to make sure that the new data we add into the new geom_point() does not
contain the variable we facet on. Thus, we only keep the columns we need for our ‘x’ and ‘y’ axes.
g1_fg_clean_vertical_bg <- g1_fg_clean_vertical + geom_point(data = midwest[,

c("popwhite", "popblack")], colour = "grey", alpha = 0.2)
g1_fg_clean_vertical_bg

15

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

• What happens if you add "state" to the list of columns selected in the data attribute of the new
geom_point() component?

16

We have managed to make a plot that is separated by different points of interest, and looks generally readable.
However, our legend is taking up a lot of space, and our title doesn’t really stand out.
The next part, hence, is to stylize our plot.

The theme() element

The theme() element in ggplot lets us stylize specific parts of the plot’s layout - specifically the following 4:
- element_text() : axis and graph titles and text
- element_lines : components like axis and grid lines
- element_rect() : rectangular components like plots and panel background
- element_blank : set other theme components to ‘blank’

Firstly, I will edit the text styling for our plot title. This can be done by defining specific font-related
attributes for plot.title in the theme component, as shown here:
g1_fg_clean_vertical_bg + theme(plot.title = element_text(size = 22, face = "italic",

hjust = 0.5))

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

If you are typing the command in the RStudio console, pressing ‘tab’ while you are within the
element_text() part reveals other attributes you can customize.

Follow this link to learn more about customizing the font on your ggplots. It requires an additional package
called extrafont.

17

http://blog.revolutionanalytics.com/2012/09/how-to-use-your-favorite-fonts-in-r-charts.html

Next, we can change the position of the legend. Notice how this one doesn’t require any element_??(). This
attribute is defined as one of the following options, "none", "left", "right", "bottom", "top". Feel
free to play around with this.
base_plt <- g1_fg_clean_vertical_bg + theme(plot.title = element_text(size = 22,

face = "italic", hjust = 0.5), legend.position = "bottom")
base_plt

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State
IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

Notice how the keys are in two rows. This goes back to our guides() section, where we defined
our colour legend to be printed in 2 rows (nrow=2).

Lastly, say I want to make the background of my plot pink. I will modify the panel.background option
within theme().
base_plt + theme(panel.background = "pink")

Does that work? Since panel.background is a ‘rectangular attribute’ that we are stylizing, we need to
modify its characteristics using an element_rect option, like below:
base_plt + theme(panel.background = element_rect("pink"))

18

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State
IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

19

Make my plot look like it was made in Excel

Sometimes, all these fancy shmancy customizations just aren’t enough. ggthemes is a handy package that
lets you quickly customize colour palettes and overall plot appearance using simple commands. The following
is a brief sampling of what it has to offer.
library(ggthemes)
Going for an Excel look
base_plt + theme_excel()

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

. . . as ugly as you would expect it to be.
Going for an Excel look with Excel colours
base_plt + theme_excel() + scale_colour_excel()

20

https://cran.r-project.org/web/packages/ggthemes/vignettes/ggthemes.html

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

8

12

16

20

24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State

IL

IN

MI

OH

WI

Compact vertical Facet Grid plot

Going for an Economist look with different colours
base_plt + theme_economist() + scale_colour_economist()

21

IL
IN

M
I

O
H

W
I

0 5 10 15 20

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

8
12
16
20
24

Log transformed − Population of Blacks

Lo
g

tr
an

sf
or

m
ed

 −
 P

op
ul

at
io

n
of

 W
hi

te
s

American State
IL
IN

MI
OH

WI

Compact vertical Facet Grid plot

Have fun!

Exercises

1. Can you trace back what the expanded plot definition in base_plt object is? That is, rewrite base_plt
as the ggplot() definition it stands for.

Solution:
Trace back to all objects defined
ggplot(midwest, aes(x = log2(popblack), y = log2(popwhite), colour = state)) +

geom_point(alpha = 0.5,) + theme_bw(base_size = 11) + stat_smooth() +
labs(x = "Log transformed - Population of Blacks", y = "Log transformed - Population of Whites") +
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 2,

fill = NA), title = "American State", nrow = 2)) + ggtitle("Compact vertical Facet Grid plot") +
facet_grid(state ~ ., scales = "free_x", space = "free_x") + geom_point(data = midwest[,
c("popwhite", "popblack")], colour = "grey", alpha = 0.2) + theme(plot.title = element_text(size = 22,
face = "italic", hjust = 0.5), legend.position = "bottom")

2. Can you create the following plot?.
ggplot(midwest, aes(x = percollege, y = percbelowpoverty, colour = state)) +

theme_solarized(base_size = 12) + stat_smooth(method = "lm") + geom_point(alpha = 0.5) +

22

labs(x = "Percent college educated", y = "Percentage below poverty line") +
guides(colour = guide_legend(override.aes = list(alpha = 1, size = 2,

fill = "yellow"), title = "American State", ncol = 2)) + ggtitle("Does being in a metro area influence poverty?") +
facet_grid(state ~ ifelse(inmetro == 0, "Not in metro", "In metro"),

scales = "free_x", space = "free") + theme(plot.title = element_text(size = 20,
face = "bold.italic", hjust = 1), legend.position = "top")

In metro Not in metro

IL
IN

M
I

O
H

W
I

10 20 30 40 10 20 30

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

0
10
20
30
40
50

Percent college educated

P
er

ce
nt

ag
e

be
lo

w
 p

ov
er

ty
 li

ne

American State

IL

IN

MI

OH

WI

Does being in a metro area influence poverty?

Hints:
- We are comparing ‘percbelowpoverty’ with ‘percollege’
- The Metro variable is ‘inmetro’; look up the usage of ifelse()
- I may not have used a loess fit

Solution will be covered in tutorial (time allowing), and posted here after tutorial.

Additional tid-bits

Towards the end of the tutorial I was asked how to add ‘bee-swarm plots’ with boxplots. If that’s your jam,
here is one way to do it:

23

ggplot(midwest, aes(x = state, y = log2(popdensity))) + geom_boxplot() +
geom_dotplot(binaxis = "y", stackdir = "center", alpha = 0.3, dotsize = 0.3) +
theme_bw()

6

9

12

15

IL IN MI OH WI

state

lo
g2

(p
op

de
ns

ity
)

Another way to do it is using the ggbeeswarm package, if you want other specialized types of ‘swarms’.

You can also learn about other cool types of ggplot functions and figures using this cheat sheet

Take-aways

1. Saving ggplots as objects

2. Customize panels in ggplot

3. Highlight specific data points

4. Stylize parts of a plot

5. Automating ggplot makeovers with ggthemes package

24

https://github.com/eclarke/ggbeeswarm
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf

	Getting started
	ggplot - Review
	Preparing our data
	Get Data
	Exploratory plots

	Modifying guides
	Facet Wrap and Facet Grid - plotting variables
	Highlighting a part of the plot

	The theme() element
	Make my plot look like it was made in Excel
	Exercises
	Additional tid-bits
	Take-aways

