
Data cleanup and summary statistics with R
Jasleen Grewal

2019-02-21

Contents
Getting started 1

Cleaning my data . 2
Dealing with missing data . 3
Dealing with outliers . 5

Comparing groups (and plotting the significance values) 13
ggpubr magic . 16

Additional Resources 17

Take-aways 17

Extra 18
Pairs plots for expression data . 18
Filtering genes by average value or standard deviation . 18

Getting started

This tutorial assumes you know how to load data into an RStudio session, view a dataframe and explore
columns/rows of a dataframe in R. Knowing how to visualize data as scatterplots will also be helpful, though
not essential.

We will be using two packages - reshape2 and ggpubr.
- reshape2 is a package with 2 main functions, melt and dcast. It is helpful for flexibly reshaping your data.
- ggpubr is a graphing package, that lets you create publication ready ggplots, and automatically add
significance levels to your figures.
Let us also load up ggplot2 into our current environment, just in case we want to make pretty plots.
If you don't have a package installed already install.packages('packagename')
Otherwise, load it into the environment
library(ggplot2)
library(ggpubr)
library(reshape2)

1

https://cran.r-project.org/package=reshape2
https://cran.r-project.org/web/packages/ggpubr/index.html

R provides excellent support for statistical analysis. The data we will be working with is cell-line expression
data from the LINCS1000 dataset. I have adapted this dataset for our use, which is available at the same
spot you found this tutorial. You can also download the original data from here.

Cleaning my data

Load the data
data_df <- read.table("data_sp_scaled.txt", sep = "\t", stringsAsFactors = F, header = T)
and the covariate information
metadata_df <- read.table("metadata.txt", sep = "\t", stringsAsFactors = F, header = T)

As always, let us start by figuring out what we are working with. The dim() function prints the dimensions
of a dataframe, and head() function shows the first 6 rows of a dataframe. You can also print only the
row-count (or column-count) with the commands nrow() and ncol().
The command dim(data_df) tells us that the data has 35 rows and 33842 columns. Similarly, the row count
and column count values for the metadata dataframe, metadata_df, are 35, 5, respectively.

Notice that if we try to print the first 6 rows of data_df, the output is immense. Thus, instead of
head(data_df), we will print the first 6 rows, with the first 10 columns. We can select these columns with
data_df[,1:10].

TSPAN6 TNMD DPM1 SCYL3 C1orf112 FGR CFH FUCA2 GCLC NFYA
HCC1806 3.505880 0 NA NA 3.534551 NA 2.8251175 5.727614 NA 4.600950
MCF10A 4.027427 0 5.549405 2.482252 3.963324 0.0000000 5.2812262 5.292880 6.521847 4.172004
SKBR3 2.684550 0 6.747064 3.199656 4.189142 0.1014213 0.0096204 5.240616 4.322539 3.518300
HS578T NA 0 NA 1.424340 3.363768 0.0369093 5.2759113 5.841921 3.851815 4.461398
MDAMB231 4.287758 NA 5.693864 2.217807 4.619957 0.0000000 0.9724045 5.677292 4.046207 5.442562
BT20 3.335776 0 6.602087 2.648148 3.904788 0.0000000 0.1888233 4.781958 5.623793 4.138710

The column names correspond to genes, and the rows represent samples. These sample names correspond to
the column cl_id in metadata_df (can you quickly verify this using head?).

We can also quickly ensure we don’t have random unexpected values (such as characters or alphabets where
we expect numbers) using the query is.numeric. You can quickly check what this function does, by entering
?is.numeric in your R prompt.
table(sapply(data_df, is.numeric))

##
TRUE
33842

Looks like all our columns are numeric!

Take a quick look at the output from the head() function a couple of lines ago. It looks like we have some
missing values in our data! Before we try and figure out a fix for this, let us calculate how many genes have
missing values, or if the problem is only in a single sample.
R has a handy command, complete.cases, for checking if there are any rows containing missing values. It
returns a TRUE/FALSE value for every row. We can summarize the results of this list in tabular form, using
the function table().
table(complete.cases(data_df))

2

http://lincsportal.ccs.miami.edu/datasets/view/LDS-1530#downloaddataset

Var1 Freq

Var1 Freq
FALSE 5
TRUE 30

It appears 5 samples have atleast 1 gene with a missing value. We can redo this test for the genes, after
transposing our data. This is done using the function t().
table(complete.cases(t(data_df)))

Var1 Freq
FALSE 18941
TRUE 14901

Dealing with missing data

Over 50% of the genes across 5 samples are missing. We can deal with this either using imputation strategies,
or by discarding the problematic samples. As imputation strategies are an entire discussion by themselves,
we will not into dive into them today (additional resources available at end of tutorial). Instead, we will take
the easy way out and remove the samples with NAs. Good thing we have already covered a quick way to
unselect these samples!.
data_df_clean <- data_df[complete.cases(data_df),]

If you were perusing the previous tutorial, you would have noticed us using na.omit to find rows
in a dataframe that contain any NA value (in any column). These two commands are functionally
the same, but complete.cases can be used on a subset of columns instead of the entire dataframe
as well. For example, if we wanted only to remove the samples where 1 or more of certain genes
were missing, we could have chosen them with data_df[complete.cases(data_df[,c(“myFavGene1”,
“myFavGene2”,. . . .,“myfavGeneN”)]),]. Don’t forget the comma after the row-selection!

After this, we have 30 samples and 33842 genes. We can do a quick ‘smell-test’ on this data, by using the
dataframe function summary(). This function calculates summary statistics for each column in the dataframe.
We can transpose the dataframe so that the samples become columns (instead of rows).
summary(t(data_df_clean))

BT20 MCF7 PDX1258 PDX1328 BT549 HCC38 HCC70 MDAMB134 MDAMB157 MDAMB361 MDAMB436 MDAMB453 MDAMB468 PDXHCI002 HCC1143 HCC1395 HCC1419 HCC1500 HCC1937 HCC1954 CAL120 CAL51 CAL851 SUM149 SUM159 SUM1315 T47D CAMA1 HME1 HCC1428
Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 1.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 0.0000
1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 1.000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000
Median : 0.1565 Median : 0.2083 Median : 0.3089 Median : 1.123 Median : 0.1346 Median : 0.2004 Median : 0.1219 Median : 0.4786 Median : 0.3232 Median : 0.2085 Median : 0.2637 Median : 0.1186 Median : 0.204 Median : 0.1926 Median : 0.1836 Median : 0.1885 Median : 0.1543 Median : 0.1977 Median : 0.2719 Median : 0.2176 Median : 0.1677 Median : 0.1725 Median : 0.2389 Median : 0.1493 Median : 0.1041 Median : 0.1418 Median : 0.2078 Median : 0.1108 Median : 0.1323 Median : 0.2588
Mean : 1.6150 Mean : 1.6330 Mean : 1.7137 Mean : 3.433 Mean : 1.5792 Mean : 1.6433 Mean : 1.6028 Mean : 1.7914 Mean : 1.7008 Mean : 1.6365 Mean : 1.6796 Mean : 1.5859 Mean : 1.670 Mean : 1.6045 Mean : 1.6385 Mean : 1.6241 Mean : 1.5863 Mean : 1.6684 Mean : 1.7110 Mean : 1.6560 Mean : 1.6060 Mean : 1.6329 Mean : 1.6847 Mean : 1.6150 Mean : 1.5660 Mean : 1.5528 Mean : 1.6730 Mean : 1.6005 Mean : 1.5523 Mean : 1.6649
3rd Qu.: 3.2142 3rd Qu.: 3.2164 3rd Qu.: 3.2897 3rd Qu.: 3.648 3rd Qu.: 3.0660 3rd Qu.: 3.1915 3rd Qu.: 3.1620 3rd Qu.: 3.4679 3rd Qu.: 3.2967 3rd Qu.: 3.2017 3rd Qu.: 3.2644 3rd Qu.: 3.1528 3rd Qu.: 3.322 3rd Qu.: 3.1102 3rd Qu.: 3.1878 3rd Qu.: 3.1407 3rd Qu.: 3.0975 3rd Qu.: 3.3240 3rd Qu.: 3.3607 3rd Qu.: 3.2790 3rd Qu.: 3.1178 3rd Qu.: 3.2700 3rd Qu.: 3.3469 3rd Qu.: 3.1577 3rd Qu.: 3.1224 3rd Qu.: 3.0169 3rd Qu.: 3.3095 3rd Qu.: 3.2538 3rd Qu.: 3.0697 3rd Qu.: 3.2264
Max. :13.9749 Max. :13.5385 Max. :400.7026 Max. :310.614 Max. :12.7921 Max. :12.9747 Max. :13.5201 Max. :13.7050 Max. :13.4885 Max. :13.5720 Max. :13.4842 Max. :13.4478 Max. :13.215 Max. :13.4067 Max. :13.3953 Max. :13.2711 Max. :14.2527 Max. :13.9911 Max. :12.8188 Max. :13.2294 Max. :12.5078 Max. :12.8472 Max. :13.3497 Max. :13.9438 Max. :13.1575 Max. :13.2789 Max. :13.9904 Max. :13.7174 Max. :12.5431 Max. :13.7117

Well, its still hard to read! Enter ggplot! However, we need to set up our data such that we can pass in a
column with the sample name, and a column with the values being plotted.

For this, we will use the melt function from the reshape2 package. The melt function is helpful in converting
your data from the long to wide format. A similar function, cast(), can be used when you wish to calculate

3

summary statistics on your data.
data_compact_df = melt(t(data_df_clean))
colnames(data_compact_df) = c("Gene", "Sample", "Expression")

4

Dealing with outliers

ggplot has a handy geom_object (remember these from the ggplot tutorial?) for summary statistics. The
stat_summary() (or geom_summary()) method allows us to plot a pointrange plot showing the mean and 2
x standard deviation.
stat_summary() defaults to the categories defined on the x axis, and summarizes
the numeric spread on the y-axis We use coord_flip() to switch the categories
to the y-axis, to improve readability
ggplot(data_compact_df, aes(x = Sample, y = Expression)) + stat_summary() + theme_bw(base_size = 14) +

coord_flip()

BT20
MCF7

PDX1258
PDX1328

BT549
HCC38
HCC70

MDAMB134
MDAMB157
MDAMB361
MDAMB436
MDAMB453
MDAMB468
PDXHCI002

HCC1143
HCC1395
HCC1419
HCC1500
HCC1937
HCC1954

CAL120
CAL51

CAL851
SUM149
SUM159

SUM1315
T47D

CAMA1
HME1

HCC1428

1.5 2.0 2.5 3.0 3.5

Expression

S
am

pl
e

5

stat_summary with 1 Standard Deviation around mean
ggplot(data_compact_df, aes(x = Sample, y = Expression)) + stat_summary(fun.args = list(mult = 1)) +

theme_bw(base_size = 14) + coord_flip()

Segue: Another ggplot method is stat_smooth() (or geom_smooth()). This is helpful for plotting a line of
best fit on your data. When you may want to compare this with a standard straight line, geom_abline is
quite helpful.
geom_point to visualize the scatterplot stat_smooth to fit the blue line with
confidence intervals in grey geom_abline fits an x=y line by default
(intercept=0, slope=1).
ggplot(data_df_clean, aes(x = BRCA1, y = PIK3CA)) + geom_point() + stat_smooth() +

geom_abline(colour = "red", size = 2) + theme_bw(base_size = 14)

3

4

5

6

2.5 3.0 3.5 4.0 4.5

BRCA1

P
IK

3C
A

6

https://www.rdocumentation.org/packages/ggplot2/versions/1.0.1/topics/geom_abline

End of Segue: Looking back at our stat_summary figure, we have an anomalous sample! The sample
PDX1328 has readings that lie extremely outside the range of the rest of the samples. We can see this more
clearly with a boxplot version of the datapoints, plotted using geom_boxplot().
ggplot(data_compact_df, aes(x = Sample, y = Expression)) + geom_boxplot() + theme_bw(base_size = 14) +

coord_flip()

BT20
MCF7

PDX1258
PDX1328

BT549
HCC38
HCC70

MDAMB134
MDAMB157
MDAMB361
MDAMB436
MDAMB453
MDAMB468
PDXHCI002

HCC1143
HCC1395
HCC1419
HCC1500
HCC1937
HCC1954

CAL120
CAL51

CAL851
SUM149
SUM159

SUM1315
T47D

CAMA1
HME1

HCC1428

0 100 200 300 400

Expression

S
am

pl
e

Outliers come in many different flavors. There can be single datapoints (point outliers), noise in the data
(contextual outliers), and an entire divergence in the observed values (collective outliers). In this case, we
have a point outlier, which is lying far away from the rest of the observations. It may possibly have arisen
from measurement or data entry errors.

Could we have made this detection analytical? We can calculate the Z-score of each observation. A Z-score is

7

a standardized score, which tells you how many standard deviations away from the mean a data-point is. We
can calculate the score using the scale function, which is applied to each column by default.
z_data = scale(data_df_clean, center = TRUE, scale = TRUE)
z_data_avgSample = rowMeans(z_data)

Let us see which sample has the maximum z-score
print(sort(z_data_avgSample))

x
HME1 -0.2219838
SUM159 -0.1999847
HCC70 -0.1934084
SUM1315 -0.1893011
BT549 -0.1768763
SUM149 -0.1566986
HCC1419 -0.1534749
MDAMB453 -0.1447130
CAMA1 -0.1394069
HCC1143 -0.1391422
PDXHCI002 -0.1363119
CAL120 -0.1353164
BT20 -0.1281040
MDAMB361 -0.1168243
HCC1395 -0.1133929
HCC38 -0.1064774
HCC1954 -0.0957087
MCF7 -0.0944671
CAL51 -0.0903028
CAL851 -0.0835159
MDAMB468 -0.0716014
HCC1428 -0.0480493
T47D -0.0476032
HCC1500 -0.0466890
MDAMB436 -0.0288659
HCC1937 -0.0228481
PDX1258 -0.0215070
MDAMB157 0.0151131
MDAMB134 0.1772559
PDX1328 2.9102061

8

We can remove the outlier sample using the following command (note that we are making changes to the
sample x gene dataframe, not the melted version).
data_df_clean2 = data_df_clean[!(rownames(data_df_clean) %in% c("PDX1328")),]

Alright, so what does the data look like after that?
First we melt our data
data_compact_df = melt(t(data_df_clean2))
colnames(data_compact_df) = c("Gene", "Sample", "Expression")
Then we plot it
ggplot(data_compact_df, aes(x = Sample, y = Expression)) + geom_boxplot() + theme_bw(base_size = 14) +

coord_flip()

BT20
MCF7

PDX1258
BT549

HCC38
HCC70

MDAMB134
MDAMB157
MDAMB361
MDAMB436
MDAMB453
MDAMB468
PDXHCI002

HCC1143
HCC1395
HCC1419
HCC1500
HCC1937
HCC1954

CAL120
CAL51

CAL851
SUM149
SUM159

SUM1315
T47D

CAMA1
HME1

HCC1428

0 100 200 300 400

Expression

S
am

pl
e

9

Also note that while this was easy to do for a small set of samples, you may not be able to visually
identify outliers in large datasets. You can calculate z-scores for each sample, and identify samples
that lie a few deviations away. You can generate PCA decompositions of your data, and plot the
first 2 principal components. If you see a sample sitting further away from the rest, that’s an
outlier! There are also more sophisticated approaches for dealing with outliers, explained nicely
at this blogpost

10

https://datascienceplus.com/outlier-detection-and-treatment-with-r/
https://datascienceplus.com/outlier-detection-and-treatment-with-r/

It looks like PDX1258 has an outlier gene. We can easily print out the gene from our melted dataframe, with
the command data_compact_df[data_compact_df$Expression > 300, "Gene"]. This returns TSPAN6.
We can either remove this gene entirely, or replace it with the mean value. Sample metadata information can
come in handy at this point. Let us see what information the metadata dataframe can provide:
print(metadata_df)

cl_id cl_provider_name cl_provider_catalog_id cl_cell_type cl_disease_detail
CAL51 Leibniz Institute ACC-302 epithelial-like breast carcinoma
MCF7 ATCC HTB-22 epithelial breast adenocarcinoma
HME1 ATCC CRL-4010 epithelial normal
SKBR3 ATCC HTB-30 epithelial breast adenocarcinoma
MDAMB231 ATCC HTB-26 epithelial breast adenocarcinoma
BT20 ATCC HTB-19 breast ductal carcinoma
BT549 ATCC HTB-122 breast ductal carcinoma
CAMA1 ATCC HTB-21 breast adenocarcinoma
HC1143 ATCC CRL-2321 breast ductal carcinoma
HCC1395 ATCC CRL-2324 breast ductal carcinoma
HCC1419 ATCC CRL-2326 breast ductal carcinoma
HCC1428 ATCC CRL-2327 breast adenocarcinoma
HCC1806 ATCC CRL-2335 squamous cell carcinoma
HCC1937 ATCC CRL-2336 breast ductal carcinoma
HCC1954 ATCC CRL-2338 breast ductal carcinoma
HCC38 ATCC CRL-2314 breast ductal carcinoma
HCC70 ATCC CRL-2315 breast ductal carcinoma
HS578T ATCC HTB-126 breast ductal carcinoma
MDAMB134 ATCC HTB-23 breast ductal carcinoma
MDAMB157 ATCC HTB-24 breast medullary carcinoma
MDAMB361 ATCC HTB-27 breast adenocarcinoma
MDAMB436 ATCC HTB-130 breast adenocarcinoma
MDAMB453 ATCC HTB-131 breast carcinoma
MDAMB468 ATCC HTB-132 breast adenocarcinoma
T47D ATCC HTB-133 breast carcinoma
HCC1500 ATCC CRL-2329 epithelial breast ductal carcinoma
MCF10A ATCC CRL-10317 epithelial breast fibrocystic disease
SUM1315 Asterand SUM-1315MO2 unknown
SUM149 Asterand SUM-149PT unknown
SUM159 Asterand SUM-159PT unknown
CAL120 Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures ACC-459 breast adenocarcinoma
CAL851 Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures ACC-440 epithelial breast adenocarcinoma
PDX1258 Dan Stover (Harvard Medical School) epithelial breast carcinoma
PDX1328 Caitlin Mills (Harvard Medical School) epithelial breast carcinoma
PDXHCI002 Dan Stover (Harvard Medical School) epithelial breast medullary carcinoma

PDX1258 is a breast carcinoma. We can see the different disease categories by summarizing the contents of
the column cl_disease_detail. We can also sort the table while we are at it. . . .
sort(table(metadata_df$cl_disease_detail))

Var1 Freq
breast fibrocystic disease 1
normal 1
squamous cell carcinoma 1

11

Var1 Freq
breast medullary carcinoma 2
unknown 3
breast carcinoma 5
breast adenocarcinoma 10
breast ductal carcinoma 12

As there are 5 breast carcinomas in this dataset, we can potentially set the value of PDX1258 to the average
value of the gene in other breast carcinomas. If we connect our metadata with our expression data, it will
be easy to select the gene and samples of interest. For this we use the merge function. Merging requires a
column that has the same values in the 2 different dataframes we are joining. Note that we can specify the
column using by="shared column" if the column has the same name in the 2 dataframes.
Merge expression and metadata
data_merged = merge(data_compact_df, metadata_df, by.x = "Sample", by.y = "cl_id")
Select PDX1258's outlier gene
brca_tspan_df = data_merged[data_merged$Gene == "TSPAN6" & data_merged$cl_disease_detail ==

"breast carcinoma",]

Sample Gene Expression cl_provider_name cl_provider_catalog_id cl_cell_type cl_disease_detail
101527 CAL51 TSPAN6 5.6334571 Leibniz Institute ACC-302 epithelial-like breast carcinoma
679083 MDAMB453 TSPAN6 0.2958427 ATCC HTB-131 breast carcinoma
750048 PDX1258 TSPAN6 400.7026020 Dan Stover (Harvard Medical School) epithelial breast carcinoma
913735 T47D TSPAN6 3.9403834 ATCC HTB-133 breast carcinoma

Notice that there are only 4 samples here, and CAL51 is similar to PDX1258 as both are epithelial-like cell
lines. We can set the TSPAN6 value for PDX1258 the same as sample CAL51, or the average of the 3 breast
carcinomas.
Firstly we update data_df_clean2 Notice how we select the row with the sample
name, and gene with the gene name
data_df_clean2["PDX1258", "TSPAN6"] = mean(brca_tspan_df[brca_tspan_df$Sample !=

"PDX1258", "Expression"])
Then we recalculate the melted version of this dataframe
data_compact_df = melt(t(data_df_clean2))
colnames(data_compact_df) = c("Gene", "Sample", "Expression")

12

Comparing groups (and plotting the significance values)

For the last bit, we will use an in-built dataset, airquality. You can load it into your current environment
by typing data(airquality).
data(airquality)

Ozone Solar.R Wind Temp Month Day
41 190 7.4 67 5 1
36 118 8.0 72 5 2
12 149 12.6 74 5 3
18 313 11.5 62 5 4

NA NA 14.3 56 5 5
28 NA 14.9 66 5 6

We will use the package ggpubr. This package is quite similar to ggplot, but it has additional methods that
make it easy to create publication-ready figures in R. One of these methods is stat_compare_means().
ggplot(airquality[airquality$Month %in% c(5, 6),], aes(x = Month, y = Temp)) + geom_boxplot() +

stat_compare_means() + theme_bw(base_size = 14)

You have probably run into an error message as you run the code above.
Warning message: Continuous x aesthetic – did you forget aes(group=. . .)? .
This is because the categories we are passing to perform the paired test for significance are numeric (hence
‘continuous’). We can overcome this by treating the category column’s values (Month) as strings.
ggplot(airquality[airquality$Month %in% c(5, 6),], aes(x = as.character(Month),

y = Temp)) + geom_boxplot() + stat_compare_means() + theme_bw(base_size = 14)

Wilcoxon, p = 2.4e−08

60

70

80

90

5 6

as.character(Month)

Te
m

p

• You can change the type of test that is performed. For example, try updating stat_compare_means()
to stat_compare_means(method="t.test")

13

We can visualize the spread of data in the different categories using other geometric objects. A violin plot
is an extension of a box-plot that shows the kernel density distributions of the data points, in addition to the
median value and spread.
ggplot(airquality[airquality$Month %in% c(5, 6),], aes(x = as.character(Month),

y = Temp)) + geom_violin() + stat_compare_means() + theme_bw(base_size = 14)

Wilcoxon, p = 2.4e−08

60

70

80

90

5 6

as.character(Month)

Te
m

p

We can also extend the comparison to more than two groups. This, however, requires a bit of work. We
first need to define the various pairwise comparisons we wish to perform. Subsequently we pass this list of
comparisons to stat_compare_means.
my_comparisons <- list(c("5", "6"), c("7", "8"), c("6", "8"), c("7", "9"))
Plot p-values for specified comparisons
ggplot(airquality, aes(x = as.character(Month), y = Temp)) + geom_violin() + geom_point(alpha = 0.5) +

stat_compare_means(comparisons = my_comparisons, method = "t.test") + theme_bw(base_size = 14)

14

9.2e−11

0.0055

0.96

0.00018

60

80

100

5 6 7 8 9

as.character(Month)

Te
m

p

You can calculate the significance of difference in means between all groups relative to a reference, like so:
ggplot(airquality, aes(x = as.character(Month), y = Temp)) + geom_violin() + geom_point(alpha = 0.5) +

stat_compare_means(method = "t.test", ref.group = "5") + theme_bw(base_size = 14)

T−test, p = 9.2e−11 T−test, p < 2.2e−16 T−test, p = 1.1e−15 T−test, p = 3.3e−07

60

70

80

90

5 6 7 8 9

as.character(Month)

Te
m

p

15

ggpubr magic

ggpubr’s methods theme_pubclean and theme_pubr shift the focus of your plot to your data.
my_comparisons <- list(c("5", "6"), c("7", "8"), c("6", "8"), c("7", "9"))

ggplot(airquality, aes(x = as.character(Month), y = Temp)) + geom_violin() + geom_point(alpha = 0.5) +
stat_compare_means(comparisons = my_comparisons, method = "t.test") + labs(x = "Month",
y = "Temperature") + theme_pubclean(base_size = 14)

9.2e−11

0.0055

0.96

0.00018

60

80

100

5 6 7 8 9

Month

Te
m

pe
ra

tu
re

16

Additional Resources

Understanding reshape2, wide and long formats
Outlier detection with R
Understanding Outliers and their relevance Detailed lecture on data cleanup with R
Using ggpubr to calculate significance

Take-aways

1. Basic smell-tests on your data

2. Removing cases with missing data

3. Identifying outliers
4. Descriptive statistics
5. Using ggpubr to create publication-ready figures

17

https://seananderson.ca/2013/10/19/reshape/
http://www.questionflow.org/2017/12/26/combined-outlier-detection-with-dplyr-and-ruler/
https://towardsdatascience.com/a-brief-overview-of-outlier-detection-techniques-1e0b2c19e561
https://cran.r-project.org/doc/contrib/de_Jonge+van_der_Loo-Introduction_to_data_cleaning_with_R.pdf
http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/76-add-p-values-and-significance-levels-to-ggplots/

Extra

Pairs plots for expression data

Given a few samples (observations) with a large number of genes (variables), we can quickly evaluate if
certain samples are outliers, simply by comparing the pair-wise scatterplots for all the samples
We can also plot pairwise scatterplots
brca_df = data_merged[data_merged$cl_disease_detail %in% c("normal", "breast medullary carcinoma"),

]
Reverse the melt step
brca_df_recast = dcast(brca_df[, c("Sample", "Gene", "Expression")], Sample ~ Gene)
rownames(brca_df_recast) = brca_df_recast$Sample
brca_df_recast$Sample <- NULL
Remove the outlier gene
brca_df_recast = brca_df_recast[, !(colnames(brca_df_recast) %in% c("TSPAN6"))]
pairs(t(brca_df_recast), panel = function(...) smoothScatter(..., add = TRUE))

Filtering genes by average value or standard deviation

We firstly identify genes that vary within disease types. We will compare breast adenocarcinomas and breast
ductal carcinomas.
Select the samples from the metadata dataframe
samples_brca = metadata_df[metadata_df$cl_disease_detail %in% c("breast adenocarcinoma",

"breast ductal carcinoma"),]
Filter our dataframe based on this list
brca_cohorts_df = data_df_clean2[rownames(data_df_clean2) %in% samples_brca$cl_id,

]
Compare this dataframe to what you get with the following command
brca_cohorts_testdf = data_df_clean2[samples_brca$cl_id,]

We will do some filtering to identify the most variable genes. Bioconductor’s package genefilter also has some
of these pre-implemented.
Calculate mean of each gene
avg_genes = sapply(brca_cohorts_df, mean)
Calculate standard deviation of each gene
sd_genes = sapply(brca_cohorts_df, sd)
Filter dataframe based on an SD threshold of your choosing
brca_cohorts_filt = brca_cohorts_df[, names(sd_genes[sd_genes == max(sd_genes)]),

drop = FALSE]
brca_cohorts_filt$cl_id = rownames(brca_cohorts_filt)
brca_cohorts_filt = merge(brca_cohorts_filt, metadata_df)

ggplot(brca_cohorts_filt, aes(x = cl_disease_detail, y = TFF1)) + geom_boxplot() +
theme_bw(base_size = 16) + stat_compare_means(method = "t.test")

18

http://bioconductor.org/packages/release/bioc/html/genefilter.html

T−test, p = 0.27

0

3

6

9

12

breast adenocarcinoma breast ductal carcinoma
cl_disease_detail

T
F

F
1

19

	Getting started
	Cleaning my data
	Dealing with missing data
	Dealing with outliers

	Comparing groups (and plotting the significance values)
	ggpubr magic

	Additional Resources
	Take-aways
	Extra
	Pairs plots for expression data
	Filtering genes by average value or standard deviation

